Direction reversal of a rotating wave in Taylor–Couette flow

نویسنده

  • J. ABSHAGEN
چکیده

In Taylor–Couette systems, waves, e.g. spirals and wavy vortex flow, typically rotate in the same direction as the azimuthal mean flow of the basic flow which is mainly determined by the rotation of the inner cylinder. In a combined experimental and numerical study we analysed a rotating wave of a one-vortex state in small-aspectratio Taylor–Couette flow which propagates either progradely or retrogradely in the inertial (laboratory) frame, i.e. in the same or opposite direction as the inner cylinder. The direction reversal from prograde to retrograde can occur at a distinct parameter value where the propagation speed vanishes. Owing to small imperfections of the rotational invariance, the curves of vanishing rotation speed can broaden to ribbons caused by coupling between the end plates and the rotating wave. The bifurcation event underlying the direction reversal is of higher codimension and is unfolded experimentally by three control parameters, i.e. the Reynolds number, the aspect ratio, and the rotation rate of the end plates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydromagnetic Couette flow of class-II and heat transfer through a porous medium in a rotating system with Hall effects

Steady hydromagnetic Couette flow of class-II of a viscous, incompressible and electrically conducting fluid through a porous medium in a rotating system taking Hall current into account is investigated. Heat transfer characteristics of the fluid flow are considered taking viscous and Joule dissipations into account. It is noticed that there exists flow separation at the moving plate in the sec...

متن کامل

Nonlinear standing waves in Couette-Taylor flow.

A nonlinear stability analysis by Demay and looss [J. Mec. Theor. Appl. , special issue, p. 193 (1984)] of flow between concentric rotating cylinders (the Couette-Taylor system) predicted a transition from the basic flow to a state with ribbons, which are traveling waves in the azimuthal direction but standing waves in the axial direction. We have observed the transition to ribbons in laborator...

متن کامل

Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system

We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Dependin...

متن کامل

Influence of Magnetic Fields on Taylor Vortex Formation in Magnetic Fluids

The flow of a magnetic fluid placed inside a small gap between concentric rotating cylinders is investigated for axial, radial and azimuthal magnetic fields. An equation of motion is derived phenomenologically to describe the hydrodynamics of magnetic fluids. Studied are the changes in the critical Taylor number T~ and wave number kc which characterize the instability of primary circular Couett...

متن کامل

Entropy generation due to unsteady hydromagnetic Couette flow and heat transfer with asymmetric convective cooling in a rotating system

Entropy generation in an unsteady hydromagnetic Couette flow of a viscous incompressible electrically conducting fluid between two infinite horizontal parallel plates in a rotating system have been analyzed. Both the lower and upper plates of the channel are subjected to asymmetric convective heat exchange with the ambient following the Newton's law of cooling. A numerical solution for governin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008